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Abstract—This work proposes a data fusion approach for
quickest fault detection and localization within industrial plants
via wireless sensor networks. Two approaches are proposed,
each exploiting different network architectures. In the first
approach, multiple sensors monitor a plant section and indi-
vidually report their local decisions to a fusion center (FC).
The FC provides a global decision after spatial aggregation
of the local decisions. A post-processing center subsequently
processes these global decisions in time, which performs quick
detection and localization. Alternatively, the FC directly performs
a spatiotemporal aggregation directed at quickest detection,
together with a possible estimation of the faulty item. Both
architectures are provided with a feedback system where the
network’s highest hierarchical level transmits parameters to the
lower levels. The two proposed approaches model the faults
according to a Bayesian criterion and exploit the knowledge of
the reliability model of the plant under monitoring. Moreover,
adaptations of the well-known Shewhart and CUSUM charts
are provided to fit the different architectures and are used
for comparison purposes. Finally, the algorithms are tested via
simulation on an active Oil and Gas subsea production system,
and performances are provided.

Index Terms—Data fusion, fault detection, Industry 4.0, local-
ization, monitoring, quickest detection, reliability, wireless sensor
network (WSNs).

I. INTRODUCTION

OVER the last decades, wireless sensor networks (WSNs)
have surged in growth, harnessing low-cost “green”

devices for monitoring applications [2]. Fueled by the
advances in sensor technology, wireless communication proto-
cols, and the popularization of the Internet of Things (IoT) [3],
this expansion has ushered in a new era of data acquisition
and situation awareness. WSNs, as the sensing arm of the IoT,
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play a pivotal role in this paradigm, seamlessly merging the
physical and digital realms through real-time data for diverse
inference tasks [4].

Specifically, there has been a considerable focus on the
detection and localization of adverse events, with a partic-
ular emphasis on their application in developing safeguards
for safety-critical systems. This situation holds considerable
importance in sectors like the process industry, energy pro-
duction, and manufacturing, where the malfunction of a
single component (the event under scrutiny) could jeopar-
dize the well-being of both employees and the environment.
Consequently, this could lead to significant environmental
and societal expenses, as well as substantial financial losses
resulting from unexpected shutdowns [5]. For that reason,
the global critical infrastructure protection market currently
commands a valuation of U.S. $132 billion, and forecasts
indicate a steady 3.4% compound annual growth rate through
2030. In this context, IoT technologies will play a dominant
role [6]. In light of those reasons, the exploration of event
detection using WSNs for industrial purposes has garnered
significant attention. Various architectural designs have been
scrutinized and put forth, with a specific focus on underwater
applications, as referenced in previous literature [7], [8].

A pivotal concern in this context revolves around identifying
equipment malfunctions that could potentially result in loss
of containment. This concern is particularly pronounced in
settings where inspections come at a substantial cost, such as
subsea facilities, as indicated by prior research [9], [10].

On top of that, to lower communication and processing costs
(thus prolonging the WSN lifetime and reducing monitoring
costs), the sensors are typically engineered to communicate
1-bit decisions to a fusion center (FC), which gathers such
decisions and formulates a global decision regarding the
presence of the event of interest (in our case a fault on
the monitored plant) [11], [12]. Upon detecting a hostile event,
the FC generates an alarm, enabling appropriate measures
(e.g., emergency plant maintenance) to be implemented in
order to mitigate the event’s repercussions.

It is important to highlight that the efficacy of a system for
detecting and localizing faults also depends on how well it is
integrated into a risk management framework. This integration
allows full exploitation of the amount of information available
about the surveilled system during the design stage of the
fault detection and localization system. A suitable integration
can be achieved by using the dynamic risk management
framework (DRMF), which is designed to incorporate external
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experiences and early warnings, thereby allowing the assimi-
lation of unknown variables [13], [14], [15], [16]. Enhanced
risk awareness associated with unforeseen events enables
learning and understanding, which is based on the continuous
monitoring and review of accumulated information. DRMF
involves several steps, such as 1) horizon screening; 2) hazard
identification; 3) assessment; and 4) decision/action. These
steps are necessary for a comprehensive evaluation of the risks
connected to known potential accident scenarios. To make the
DRMF an adaptive process, iterative updates are essential. In
this context, the fault detection and localization system serves
as a warning subsystem within a decision-support system by
playing a role in actions like plant shutdown and maintenance.

In this context, peculiar characteristics and challenges for
the problem are: 1) the finite spatial extent of the event
being monitored (i.e., some sensors may be out-of-range for
detecting a certain fault); 2) the fault location is unknown
(viz., it may have originated from different items of interest
within the plant); 3) each fault may be more or less probable
depending on the reliability of the item responsible for it;
4) efficient detection algorithms should be conceived to detect
such events as quickly as possible (viz., minimize the perma-
nence in a risky condition) while keeping false-alarms under
control (viz., avoid unnecessary maintenance/shutdowns); and
5) detection approaches should be coupled with (or better,
include) localization procedures to identify the faulty item
(viz., minimize the plant maintenance time/costs).

In the context of challenges 1) and 2), various algo-
rithms have been proposed in the literature for detecting
spatially localized events at unknown locations (such as
radiation releases, anomalous parameter fields, or nonco-
operative targets) via distributed WSNs. Initial attempts
involve the straightforward application [17], [18] or adap-
tations/extensions [19] (e.g., by using ordering schemes
according to most informative sensors) of the subop-
timal counting rule (CR). Notably, the plain CR has
recently found application in the specific domain of sub-
sea oil spill detection [20], [21]. An alternative approach
is explored in [10] and [22], where a modified version of
the Chair–Varshney Rule is devised. This rule is designed
to partially incorporate critical items’ locations and failure
rates. Additionally, it is coupled with localization techniques
to address challenge 5). Regrettably, these rules do not take
into account the limited extent and unknown location of the
detected phenomenon by design. This results in diminished
detection performance.

Conversely, recent years have witnessed the emergence of
a range of fusion rules designed for the explicit detection
of spatially localized events with unknown locations through
distributed WSNs [12], [23], [24]. To tackle this challenge,
these approaches have harnessed methodologies such as the
generalized-likelihood ratio test (GLRT), Bayesian techniques,
generalized score tests, or hybrid variations. While primarily
focused on detecting noncooperative targets, these algorithms
can be adapted to address challenges 1), 2), and 5). However, it
is essential to note that the fusion methods mentioned are fun-
damentally designed in a batch fashion (or overlook temporal
dependencies) and fail to target the rapid onset of faults, thus

not fully addressing challenge 4). Recent advancements in
this domain have made strides in mitigating the constraints
associated with batch design [25], [26]. Nevertheless, these
proposals are not able to promptly detect events as they
occur, which is crucial in addressing the quickest detection
problem.

Furthermore, to the best of our understanding, no approach
has effectively integrated data regarding the dependability of
the system being monitored when developing the detection
algorithm, i.e., challenge 3). Vital data, encompassing the
positions, failure rates, and failure models of critical items,
represent valuable a-priori information that may be seamlessly
substantiated within a Bayesian approach. Hence, the main
contributions of this work are the following.

1) We present two spatiotemporal sensor fusion approaches
designed to carry out quickest detection and localiza-
tion of faults within a system. To elaborate, a WSN
collectively observes the status of various equipment
components and communicates their decisions to two
different classes of architectures.

2) The first architecture (aligning to an edge–fog–cloud
paradigm [27]) is composed of an FC which performs
spatial aggregation and an optimal per-sample decision.
These decisions are subsequently processed over time by
a post-processing center (PPC). The PPC is responsible
for swiftly identifying system faults based on a Bayesian
approach and takes advantage of time-varying statis-
tical distributions influenced by the reliability data of
system components. Differently, the second architecture
(aligning to an edge–cloud paradigm) is composed
of an FC only, which performs a joint spatiotem-
poral aggregation in a Bayesian quickest detection
fashion. These architectures are compared with base-
lines represented by the Shewhart and CUSUM charts,
respectively, as well as in terms of their computational
complexity.

3) The outcomes of the suggested methods are examined
with a specific focus on a practical Oil and Gas
configuration, specifically the subsea production system
of the Goliat FPSO [28]. The results, encompassing
both a) detection and localization as well as b) metrics
emphasizing reliability, underscore the attractiveness of
the proposed methods and the added advantage of
temporal aggregation compared to relying solely on
spatial aggregation.

This study delves deeper into the application of WSNs
for fault detection and localization, incorporating reliability-
related item data into the same detection algorithm(s) as
previously introduced in [1]. Indeed, this earlier conference
work: 1) analyzed a three-layer architecture; 2) provided a
comparison with a Shewhart chart; 3) reported a prelim-
inary numerical analysis using only one threshold value;
and 4) focused on the detection task without providing a
localization algorithm. Conversely, this work investigates and
compares two relevant fusion architectures (i.e., two- versus
three-layer) to accommodate a larger spectrum of designer
requirements using a wide number of detection thresholds.
Second, additional baselines are included in the comparison
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(i.e., the CUSUM chart). Third, the proposed design includes
fault-localization capabilities.

This article’s remaining sections are arranged as follows.
Section II provides a description of the system model con-
sidered (including failure and corresponding sensing models),
whereas Section III presents the design of the local detectors
that is common to all the architectures discussed in this work.
Then, Section IV recalls the state-of-the-art in industrial fault
identification, whereas Sections V and VI are devoted to
introducing the considered Three-Layer and Two-Layer fusion
approaches, respectively. Section VIII analyzes the proposed
approaches’ pros and cons in relation to a relevant case study
concerning oil spills in a production platform and discusses the
results. Finally, Section IX ends this article with concluding
remarks and a brief prospect of future avenues of research.

Notation: Vectors are indicated with bold letters; the norm
and transpose operators are represented as ‖ · ‖ and [ · ]T;
probability mass functions (PMFs) and probability density
functions (PDFs) are denoted as P(·) and p(·), respectively;
conditional counterparts are represented by P(·|·) and p(·|·);
a Gaussian distribution with mean μ and variance σ 2 is
labeled as N (μ, σ 2); the complementary cumulative distribu-
tion function (CCDF) of the standard normal distribution is
denoted by Q(·); an exponential distribution with rate λ is
expressed as Exp(λ); a Bernoulli distribution with parameter
p is symbolized as B(p); a Gamma distribution with shape α

and rate β is indicated by Gamma(α, β); a Poisson distribution
with parameter p is represented as Poisson(p); Ga(z) expresses
the probability-generating function of the discrete random
variable a; a+ � max{a, 0} defines the positive component of
the real number a; â, E(a), and E(a|b) stand for an estimate
of the random variable a, its expected value, and conditional
expectation given the random variable b, respectively; and the
big O notation is denoted by O(·).

II. SYSTEM MODEL

This work has the objective of detecting and localizing faults
within a given set of critical items associated with an industrial
plant (e.g., the subsea production system of an offshore oil
platform). The failure model associated with each of these
items is described and motivated in Section II-A. Possible
faults are monitored by a group of inexpensive sensor nodes
(arranged in a WSN), whose measurement model is detailed
in Section II-B. At each instant, the sensor computes a one-bit
compression based on a local detection logic, which is then
reported for (time and spatial) aggregation according to the
considered fusion architectures, as described in Section II-C.

A. Failure Model

The monitored portion of the plant is conceptualized as a
system comprising M individual items. Each item’s state at
time t is represented by the following variable:

Hm(t) =
{

0, mth item is operational
1, mth item is faulty

(1)

where operational indicates that the item is functioning as
intended with no immediate action required, while faulty

Fig. 1. Failure model (excluding inspection and maintenance durations).

signifies that the item needs maintenance. Moreover, we define
the state variable at time t for the whole system as

H(t) = 1 −
M
∏

m=1

(1 − Hm(t)) =
{

0, operational system
1, faulty system

(2)

implying independent failures and that the system is regarded
as faulty when at least one of its items is in such state (i.e.,
series system). An item retains a faulty state until maintenance
is carried out. In the present work, we assume that, when
an item becomes faulty, the sensors employed to monitor the
system measure a signal with a different statistical distribution.
Upon identifying a shift in the signal distribution, an inspection
is carried out to evaluate the overall state of the system, and
maintenance is subsequently executed on all items that have
malfunctioned.

The occurrence of a failure in the mth item is represented
as a homogeneous Poisson process characterized by a failure
rate λm (refer to Fig. 1).

Let us define Tm,j as the amount of time the mth item spends
in an operational state between the (j−1)th and the jth failures
and Sm(t) as the number of transitions to a faulty state for
the mth item at time t. It follows that Tm,j ∼ Exp(λm) for all
j ∈ N. Furthermore, we introduce T∗

m,j � Tm,j+εm,j, where εm,j

represents the time elapsed before the failure state is detected.
At time t, we define τt as the time elapsed since the most
recent inspection. Because Poisson processes are memoryless,
maintenance can be considered as either repair or replacement.
A consequence of the failure model is the derivation of the
failure function (or failure probability) for the mth item, as
expressed by

Fm(t) � P(Hm(t) = 1) = 1 − e−λmτt . (3)
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Subsequently, the failure function for the entire system at a
given time t is determined by

F(t) � P(H(t) = 1) = 1 −
M
∏

m=1

(1 − Fm(t)). (4)

This expression of F(t) indicates independent failures.
Moreover, for sufficiently small values of λmτt (i.e.,
λmτt � 1), we simplify the model as

F(t) ≈
M
∑

m=1

Fm(t) = M −
M
∑

m=1

e−λmτt . (5)

Such approximation (henceforth called rare events approxima-
tion) is widely used when the items forming the monitored
system have sufficiently low values of Fm(t)’s resulting in their
products becoming negligible [29].

Furthermore, according to (5), it suggests the occurrence of
disjoint failures. This implies that at any given time t, at most
one item will be faulty, a characteristic that will be considered
in the detectors’ design. The rare event approximation allows
us to define a prior probability of item failure for the mth item
labeled as ϕm(t)

ϕm(t) � P(Hm(t) = 1|H(t) = 1) ≈ P(Hm(t) = 1)

P(H(t) = 1)

= Fm(t)

F(t)
= 1 − e−λmτt

M −∑M
m=1 e−λmτt

. (6)

Such a probability can also be expressed in a time-independent
fashion. In such case, we can define a stationary prior
probability of item failure for the mth ϕm

ϕm � λm
∑M

m=1 λm
. (7)

A detailed treatment of the mathematical modeling of the
failures as Poisson processes is given in Appendix A.

Throughout this article, the system monitoring occurs at
regular time intervals of duration 	t, with the exception of
inspection and maintenance periods. Therefore, in order to
ease the readability of this work, we consider the nth discrete
time instant, with n0 indicating the first discrete time instant
that follows the last inspection.

B. Signal Model

The expression for the received signal yk[n] at the kth sensor
during the nth discrete time point is as follows:

yk[n] =
M
∑

m=1

sm,k[n] + wk[n] (8)

where sm,k[n] and wk[n] ∼ N (0, σ 2
w,k) represent the received

signal from the mth item and the additive White Gaussian
noise (AWGN), respectively, at the kth sensor. More specifi-
cally, sm,k[n] is assumed to have the following shape:

sm,k[n] �
{

0, if Hm[n] = 0 (active item)

ξm,k[n] g(xk, hm), if Hm[n] = 1 (faulty item)
(9)

where ξm,k[n] ∼ N (0, σ 2
ξ,m) represents the fluctuations in the

received signal strength at the kth sensor. ξm,k[n] and wk[n]

are assumed statistically independent thanks to the spatial
separation of the sensors with known values of σ 2

ξ,m and σ 2
w,k,

for all k = 1, . . . , K and m = 1, . . . , M. Lastly, g(xk, θm)

denotes the attenuation function, which is a function of the
distance between the location of the kth sensor (xk) and the
position of the mth item (θm).

This model is suitable for several practical industrial settings
like the acoustic signal generated by an underwater leak sensed
by hydrophones [1], [10].

It is important to note that the rare event approximation
introduced in (5) hinders the possibility of modeling more
than one item being faulty at a given time. Thus, for any
given time instance denoted as n, we can express the statistical
characteristics of the measured signal as follows:

⎧

⎨

⎩

yk[n]|H[n] = 0 ∼ N
(

0, σ 2
w,k

)

yk[n]|Hm[n] = 1 ∼ N
(

0, σ 2
ξ,m g2(xk, θm) + σ 2

w,k

) (10)

where it is important to state that the failure of the generic
mth item caused the system to be faulty.

C. Wireless Sensor Network Models

In this work, we design two fusion architectures. The
first uses an edge–fog–cloud approach where the network
can be separated into three hierarchical layers with growing
computational power as we approach the cloud layer, as it
can be seen in Fig. 2(a). In contrast, the second uses two
hierarchical layers, i.e., an edge–cloud approach, as shown in
Fig. 2(b). Both architectures are proposed with an integrated
feedback system that transmits updated parameters from the
cloud layer to the lower layers.

The integration of an edge–fog–cloud architecture is par-
ticularly justified in scenarios where sensors are required
to operate with minimal energy consumption. This need is
exemplified in the context of underwater WSN, where the
replacement of sensors is impractical, underscoring the critical
importance of preserving their battery life (refer to the case
study in Section VIII). By incorporating an underwater fog
layer (FC), energy consumption during data transmission by
sensors can be significantly reduced. Subsequently, this fog
layer can transmit compressed information to a cloud layer
(PPC) for final processing.

The proposed WSN architectures comprise a set of K
sensors responsible for monitoring the area of interest at
regular intervals of time 	t, aiming to identify if the system
is in an operational (H[n] = 0) or a faulty state (H[n] = 1).1

The generic kth sensor is tasked with capturing and assessing
the signal yk[n]. It does so by comparing a statistic derived
from the measured signal to a threshold value that varies with
time, denoted as γk[n]. Subsequently, the sensor reaches a
local decision dk[n] = i when it declares H[n] = i. Such
a decision is then reported for further analytics. The latter
choice not only offers spectral efficiency, requiring only 1-bit
communication on the reporting channel linking the sensors
to the fusion architecture, but it also exhibits high energy

1It is important to note that the present work does not delve into the analysis
of the sampling frequency.
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(a) (b)

Fig. 2. Proposed WSN architectures (the dotted arrow constitutes the feedback system). (a) Three-layer architecture. (b) Two-layer architecture.

efficiency, especially when on–off keying (OOK) is utilized
for transmitting the local decisions (see [10] for more details).

1) Three-Layer Fusion Architecture: The first WSN we
propose incorporates an architecture consisting of an FC
and a PPC, performing spatial and temporal aggregation,
respectively. In this setup, the vector of local decisions d[n] =
[

d1[n] · · · dK[n]
]T is gathered and processed at the FC for a

global decision D[n] = i if H[n] = i is declared.
The FC performs a maximum-likelihood (ML) detection

based on the binary hypothesis as defined in (10), without
assuming prior knowledge about the probabilities of events
H[n] = 0 and H[n] = 1. On the other hand, the PPC col-
lects D[n] = [D[n0] · · · D[n]

]T and incorporates information
from the failure model as well as the signal model defined
in (8) and (10). The PPC makes a final decision ̂H[n] through
a Bayesian posterior detection, with ̂H[n] = 1 triggering
inspection operations.

Moreover, in the case of ̂H[n] = 1, the PPC computes the
estimated position of the faulty item ̂θ [i] = θ m̂[i], where i
indicates the number of times an alarm has been raised, up
to instant n. Additionally, the PPC is responsible for ongoing
communication with the sensors, providing them with updated
values for their individual time-dependent thresholds as well as
calculating and transmitting to the FC several time-dependent
parameters necessary to perform the global detection
task.

This architecture is compared with an architecture lacking
the PPC and the feedback system where the FC is the highest
hierarchical layer. As the FC computes the final decision
without temporal aggregation of the local decisions, this
solution is here named Shewhart chart [30].

2) Two-Layer Fusion Architecture: In this second archi-
tecture, the FC collects d[n0], . . . , d[n] and directly performs
a Bayesian posterior detection, therefore incorporating the
(temporal-aggregation) functions of the PPC within the FC
itself. As a consequence, it becomes the FC’s task to provide
the estimated position of the faulty item, as well as to transmit
updated local thresholds to the respective sensors.

This architecture is compared with an architecture without
feedback system performing an adaptation of the CUSUM
chart [30].

The architectures employed for executing the Shewhart and
CUSUM charts can both be depicted as modifications of
the architecture shown in Fig. 2(b). In these variations, the
feedback channel is absent, and when executing the Shewhart
chart, the FC exclusively engages in spatial aggregation.

III. LOCAL DETECTION

This section provides the description of the local detector as
it presents the same design strategy among all the presented
cases. For the sake of notation, we outline the design for
systems with no feedback mechanism (as in the architecture
using the Shewhart and CUSUM charts). The changes of
notation necessary when using a feedback mechanism are
provided at the end of the section. The edge layer of the
proposed architectures consists of the sensors individually
taking local decisions. Based on the binary hypothesis in (10),
the optimal test is a likelihood ratio test (LRT) on yk[n],
indicated as �k(yk[n]). Here, the unknown location of the
faulty item is marginalized by employing the stationary prior
probability of item failure from (7). Precisely, for the kth
sensor at the nth instant, it holds

�k(yk[n]) � p(yk[n]|H[n] = 1)

p(yk[n]|H[n] = 0)
(11)

=
∑M

m=1 ϕm p(yk[n]|Hm[n] = 1)

p(yk[n]|H[n] = 0)
.

Hence, by leveraging (10), we get the ML detector

�k(yk[n]) =
M
∑

m=1

(

ϕm am,k ebm,k y2
k [n]
) dk[n]=1

≷
dk[n]=0

1 (12)

where

am,k �

√

√

√

√

σ 2
w,k

σ 2
ξ,m g2(xk, θm) + σ 2

w,k

(13)
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bm,k � 1

2

(

1

σ 2
w,k

− 1

σ 2
ξ,m g2(xk, θm) + σ 2

w,k

)

. (14)

Since �k(yk[n]) in (12) is monotonically increasing with
y2

k[n], there exists a unique value of γk such that �k(
√

γk) = 1.
Consequently, by the Karlin–Rubin theorem, the test in (12) is
replaced with the following equivalent energy test [31], which
reduces the computational complexity of the local test from
O(M) to O(1)

y2
k[n]

dk[n]=1
≷

dk[n]=0
γk. (15)

This equals to the determination of the value of γk that solves
�k(

√
γk) = 1

M
∑

m=1

(

ϕm am,k ebm,k γk
)

= 1. (16)

The left-hand side exhibits smoothness, convexity, and
increases with γk. Consequently, convergence is assured,
starting from any initial value γ

(0)
k when employing the

Newton–Raphson method (see [32])

γ
(q+1)

k = γ
(q)

k −
∑M

m=1

(

ϕm am,k ebm,k γ
(q)
k

)

− 1

∑M
m=1

(

ϕm am,k bm,k ebm,k γ
(q)
k

) (17)

where q denotes the iteration index.
We express the theoretical performance of the energy test

in (15), necessary when designing the higher hierarchical layer
represented by the FC. Specifically, for the kth sensor, the
probability of detection (P(m)

D,k) associated with the failure of
the mth item and probability of false alarm (PF,k) are found
from (10) as in [33]

P(m)
D,k � P(dk[n] = 1|Hm[n] = 1)

= P

(

y2
k[n] ≥ γk|Hm[n] = 1

)

= 2Q
⎛

⎝

√

γk

σ 2
ξ,m g2(xk, θm) + σ 2

w,k

⎞

⎠ (18)

PF,k � P(dk[n] = 1|H[n] = 0) = P

(

y2
k[n] ≥ γk|H[n] = 0

)

= 2Q
⎛

⎝

√

γk

σ 2
w,k

⎞

⎠. (19)

In this section, we used the static prior probabilities of
item failure ϕm’s obtained using (7). This causes the local
thresholds γk’s to be time-independent as well. However,
our two proposed systems use a feedback system allowing
the sensors to be designed using the time-dependent prior
probabilities of item failure ϕm[n]’s calculated via (6). Its use
results in time-dependent values of γk[n]’s [as the values of
ϕm[n]’s are used for its calculation via (17)], P(m)

D,k[n]’s, and
PF,k[n]’s. Thus, the iterative procedure shown in (17) must be
continuously carried out by either the PPC (in the Three-Layer
WSN) or the FC (in the Two-Layer WSN), transmitting to the
kth sensor the correct value of γk[n].

There are no energy consumption issues associated with
this, as these transmissions are sent by the highest hierarchical
layer to the sensors, which only require reception without
significant energy expenditure.

IV. STATE OF PRACTICE

This section presents two WSN architectures commonly
used for detection purposes and their related localization
algorithms: 1) the Shewhart chart where the FC takes per-
sample decisions based on the spatial aggregation of the local
decisions in that instant and 2) the CUSUM chart where,
instead, the FC aggregates the sensors’ decisions in space and
time.

Unlike the proposed methods, the baseline architectures
shown in this section are not equipped with a feedback
mechanism. Moreover, they treat the failure rates λm’s as
deterministic parameters that can be obtained via literature.

A. Shewhart Chart

In this architecture, the optimal test for the FC, at the nth
instant, is to perform an LRT on the collected vector d[n] to
take a global decision ̂H[n] [24]

�FC(d[n]) � P(d[n]|H[n] = 1)

P(d[n]|H[n] = 0)

=
∑M

m=1 ϕmP(d[n]|Hm[n] = 1)

P(d[n]|H[n] = 0)

=
M
∑

m=1

(

ϕm

K
∏

k=1


m,k(dk[n])

)

̂H[n]=1
≷

̂H[n]=0
γ ∗ (20)

with γ ∗ being the decision threshold and 
m,k(dk[n]) repre-
senting the likelihood ratio of a generic local decision dk[n]
with respect to the failure of the mth item


m,k(dk[n]) � P(dk[n]|Hm[n] = 1)

P(dk[n]|H[n] = 0)

=
(

P(m)
D,k

PF,k

)dk[n](
1 − P(m)

D,k

1 − PF,k

)1−dk[n]

. (21)

Similarly, for the FC, it is feasible to calculate the (FC)
probability of detection (Q(m)

D ) associated with the failure of
the mth item and the probability of false alarm (QF)2

Q(m)
D � P

(

̂H[n] = 1|Hm[n] = 1
)

(22)

=
∑

d:�FC(d)≥γ ∗

K
∏

k=1

[

(

P(m)
D,k

)dk
(

1 − P(m)
D,k

)1−dk
]

QF � P
(

̂H[n] = 1|H[n] = 0
)

(23)

=
∑

d: �FC(d)≥γ ∗

K
∏

k=1

[

(

PF,k
)dk
(

1 − PF,k
)1−dk

]

.

The derivation of Q(m)
D and QF can be found in Appendix B.

2The following definitions imply that if �FC(d) = γ ∗, then ̂H[n] = 1.
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We can also express the likelihood ratio at instant n of the
decision D[n] with respect to the mth item, which will be
useful in the next sections

Lm(D[n]) � P(D[n]|Hm[n] = 1)

P(D[n]|H[n] = 0)

=
(

Q(m)
D

QF

)D[n](
1 − Q(m)

D

1 − QF

)1−D[n]

. (24)

It is important to observe that (22) and (23) can be precisely
computed using a finite number of operations because the
number of potential outcomes of �FC(d) amounts to 2K . If
̂H[n] = 1, the FC runs a localization algorithm to identify
the faulty item. For this algorithm, it is possible to use the
following maximum A-posteriori (MAP) estimator:

m̂[i] = arg max
m=1,...,M

(

ϕm

K
∏

k=1


m,k(dk[n])

)

, ̂θ [i] = θ m̂[i] (25)

with i indicating the number of times an alarm has been raised,
up to instant n.

B. CUSUM Chart

This section describes the CUSUM algorithm to be per-
formed by the FC upon collecting the sensors’ local decisions
in time.

The CUSUM procedure has the following form:

max
n0≤j≤n

ln
P(d[n], . . . , d[j]|H[j] = 1)

P(d[n], . . . , d[j]|H[j] = 0)

̂H[n]=1
≷

̂H[n]=0
γ ∗. (26)

Equation (26) implicitly estimates the instant corresponding
to the system-state change via ML estimation, with the
knowledge that the system does not self-repair when in a faulty
state. However, (26) uses the system’s state variable H[n],
posing a problem as the only available likelihoods are with
respect to the failure of the individual items, and have been
explicated in (18). Due to the finite number of items M, we
can use the Generalized CUSUM (G-CUSUM) algorithm to
address this issue. The following is the G-CUSUM rule:

C[n] � max
n0≤j≤n

ln
max

m
P(d[n], . . . , d[j]|Hm[j] = 1)

P(d[n], . . . , d[j]|H[j] = 0)

= max
m

max
n0≤j≤n

ln
P(d[n], . . . , d[j]|Hm[j] = 1)

P(d[n], . . . , d[j]|H[j] = 0)

= max
m

Cm[n]
̂H[n]=1
≷

̂H[n]=0
γ ∗ (27)

which is equivalent to a joint estimation (via ML) of the failure
instant and the faulty item. Cm[n] can be expressed with a
recursive form starting from its definition and exploiting the
independence of the sensor’s decision in time

Cm[n] � max
n0≤j≤n

ln
P(d[n], . . . , d[j]|Hm[j] = 1)

P(d[n], . . . , d[j]|H[j] = 0)

= max
n0≤j≤n

n
∑

i=j

ln
P(d[i]|Hm[j] = 1)

P(d[i]|H[j] = 0)
. (28)

For n > n0, we can extract the following recursive form:

Cm[n] = max

⎧

⎨

⎩

0, max
n0≤j≤n−1

n−1
∑

i=j

ln
P(d[i]|Hm[j] = 1)

P(d[i]|H[j] = 0)

⎫

⎬

⎭

+ ln
P(d[n]|Hm[n] = 1)

P(d[n]|H[n] = 0)

= max{0, Cm[n − 1]} + ln
K
∏

k=1


m,k(dk[n])

= (Cm[n − 1])+ +
K
∑

k=1

ln 
m,k(dk[n]). (29)

On the other hand, when n = n0, by simple applica-
tion of the definition of Cm[n], we obtain that Cm[n0] =
∑K

k=1 ln 
m,k(dk[n0]). This results in the following rule:

Cm[n] =
{∑K

k=1 ln
(


m,k(dk[n0])
)

, if n = n0

(Cm[n − 1])+ +∑K
k=1 ln

(


m,k(dk[n])
)

, if n > n0.

(30)

Also for the case of the CUSUM, if ̂H[n] = 1, a
localization procedure is readily available. Such a procedure
is the following ML estimator:

m̂[i] = arg max
m

Cm[n] , ̂θ [i] = θ m̂[i] (31)

with i indicating the number of times an alarm has been raised,
up to instant n.

V. THREE-LAYER FUSION ARCHITECTURE

Here, we present the Three-Layer fusion architecture, which
consists of an evolution of the simpler Shewhart chart. In this
approach, we add the PPC layer, whose task is to filter the
FC’s decisions in time using a reliability-based strategy.

A. Fusion Center Detection

In our proposed Three-Layer architecture, the FC, at the nth
instant, performs an ML detection, whose task is to fuse the
components of d[n] into a single decision D[n]

�FC
n (d[n])

D[n]=1
≷

D[n]=0
1 (32)

where �FC
n (d[n]) differs from the statistic in (20) due to

the presence of the feedback system that allows the PPC to
transmit parameters to the FC. This feedback allows (32) to
exploit time-dependent parameters, such as ϕm[n]’s, P(m)

D,k[n]’s,
PF,k[n]’s, and 
n

m,k(dk[n]). The values of these parameters are
sent to the FC by the PPC.

For this case, the (FC) time-dependent probability of detec-
tion (Q(m)

D [n]) associated with the failure of the mth item
and the time-dependent probability of false alarm (QF[n])
at the nth instant can be computed. These are calculated
using (22) and (23) where the values of �FC(d), P(m)

D,k’s, and

PF,k’s are substituted with those of �FC
n (d), P(m)

D,k[n]’s, and
PF,k[n]’s, respectively. Consequently, the decision likelihood
will also be time-dependent [indicated with Ln

m(D[n])].
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B. Post-Processing Center Detection

The primary responsibility of the PPC is to receive D[n] and
determine if an alarm should be triggered. In contrast to local
and FC detection, the PPC incorporates the understanding
of the failure model and utilizes all D[j] values, where j =
n0, . . . , n, to enact a robust quickest fault detection strategy.
For this task, the PPC acts as a Posterior Detector performing
a test on P(H[n] = 1|D[n]), exploiting (5) which leads to the
following test:

�PPC
n (D[n]) �

M
∑

m=1

P(Hm[n] = 1|D[n])

=
M
∑

m=1

RPPC
m [n]

̂H[n]=1
≷

̂H[n]=0
γ ∗ (33)

where it can be seen that our approach aligns with an optimal
Bayesian perspective (treating the change point as a random
variable whose pdf derives from the reliability model discussed
in Section II-A). This approach corresponds to the Shiryaev
decision rule [30].

The calculation of RPPC
m [n] can be expressed recursively

via (34), shown at the bottom of the page, requiring the storage
of only the M values of RPPC

m [n − 1]’s and the value of D[n],
instead of the (n − n0 + 1) values contained in D[n]. Its
derivation is given in Appendix C. Equation (34) uses ̂λm[n]
since failure rates are considered random variables whose
realization must be estimated. The description of this task is
given below.

C. Post-Processing Center Localization

When ̂H[n] = 1, the PPC localizes the faulty item for
the generic ith time by selecting the index m that maximizes
the posterior probability of item failure RPPC

m [n] resulting in the
following MAP estimator:

m̂[i] = arg max
m

RPPC
m [n] , ̂θ [i] = θ m̂[i] (35)

with i indicating the number of times an alarm has been raised,
up to instant n.

D. Post-Processing Center Failure Rate Estimation

The precise failure rate of the unspecified mth item often
remains unknown, although literature may frequently offer an
estimate (referred to here as λm,0) along with its associated
variance (referred to as νm). Nonetheless, literature data is
often derived from a limited number of experiments on items
that may not be identical to those within the system (or under
the same operating conditions). Consequently, the PPC treats
each λm as a random variable in this context. This differs from
the Shewhart and CUSUM charts that see the failure rates

as deterministic parameters and exploit the literature values
λm,0’s for their calculations.

In specific terms, when the PPC raises an alarm, the system
is halted, and an inspection is conducted to assess the system’s
status. If the mth item’s jth failure is confirmed, it becomes
feasible to update the estimate of λm using Tm,j. Since Tm,j

is not directly accessible, the working assumption here is that
Tm,j ≈ T∗

m,j, a condition met when εm,j � λ−1
m (i.e., when

the time delay incurred by the system in detecting the fault is
significantly shorter than the mean lifetime of the item).

Utilizing the vector Tm[j] �
[

Tm,1 · · · Tm,j
]T, the PPC cal-

culates the subsequent minimum mean-square error (MMSE)
estimator for the mth item

̂λm,j = E(λm|Tm[j]). (36)

To compute this expectation, the PPC is required to acquire
the (posterior) pdf of λm|Tm[j]. Given that Tm,j ∼ Exp(λm), we
incorporate previous knowledge about the lifetime of the mth
item by modeling λm ∼ Gamma(αm,0, βm,0). Here, αm,0 �
(λ2

m,0/νm) and βm,0 � (λm,0/νm) are computed based on
existing literature values. We opt for the Gamma distribution
because it is the conjugate prior of the Exponential distribution
(see [34]). Leveraging the use of a conjugate prior, it becomes
apparent that λm|Tm[j] ∼ Gamma(αm,j, βm,j), with the Gamma
parameters calculated recursively by the PPC as αm,j =
(αm,j−1 + 1) and βm,j = (βm,j−1 + Tm,j). Once the parameters
of the (Gamma) posterior pdf of λm|Tm[j] are determined, the
corresponding MMSE estimator following the jth failure is
computed using properties of the Gamma distribution:

̂λm,j = αm,j

βm,j
. (37)

At any given time n, the most recent estimate of λm corre-
sponds to ̂λm,Sm[n−1], where Sm[n − 1] denotes the count of
failures for the mth item reported up to time (n − 1). For
brevity, we will refer to this estimate as ̂λm[n].

E. Post-Processing Center Parameters Calculation and
Transmission

The last step of the PPC at instant n, after updating (if
needed) the estimates of the failure rates of the respective
items, consists of obtaining the values of ϕm[n + 1]’s via (6)
exploitinĝλm[n + 1]. Next, via (17), it computes and delivers
the values of the local thresholds γk[n + 1]’s to the respective
sensors to be used for the next local detection.

Once produced the thresholds, the PPC proceeds to calculate
the values of P(m)

D,k[n + 1]’s and PF,k[n + 1]’s via (18) and (19)
and sends them to the FC alongside the values of ϕm[n+1]’s.
This allows the FC to evaluate �FC

n+1(d[n + 1]) via (20).
In the final step, the PPC computes the values of

Q(m)
D [n + 1]’s and QF[n+1] using (22) and (23) to be used by

RPPC
m [n] � P(Hm[n] = 1|D[n]) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

1 + 1
Ln0

m (D[n0])

(

1
1−e−̂λm[n0]	t

− 1
)]−1

, if n = n0
[

1 + 1
Ln

m(D[n])

(

1
1−e−̂λm[n]	t(1−RPPC

m [n−1])
− 1

)]−1

, if n > n0

(34)
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the PPC itself in the recursive computation of �PPC
n+1(D[n+1])

via (33) and (34).

VI. TWO-LAYER FUSION ARCHITECTURE

This section presents the Two-Layer fusion approach con-
sisting of an evolution of the Three-Layer approach. Here,
the FC handles both the spatial and temporal fusion using the
same reliability-based strategy as in the PPC. This method is
proposed as an improvement of the CUSUM chart introduced
in Section IV-B. In our proposed Two-Layer architecture, the
FC performs three stages of operations that are analogous to
those made by the PPC described in Section V.

A. Fusion Center Detection

The FC, upon receiving d[n], establishes whether an alarm
should be raised. As with the PPC, the FC now utilizes all d[j]
values, where j = n0, . . . , n, to perform a test on P(H[n] =
1|d[n], . . . , d[n0])

�FC
n (d[n], . . . , d[n0]) �

M
∑

m=1

P(Hm[n] = 1|d[n], . . . , d[n0])

=
M
∑

m=1

RFC
m [n]

̂H[n]=1
≷

̂H[n]=0
γ ∗ (38)

where it is easy to see the similarity with (33). However, in
this case, the FC processes the unfused local decisions.

Also here, RFC
m [n] can be expressed recursively via (39),

shown at the bottom of the page, allowing the FC, at the nth
instant, to store only the M values of RFC

m [n − 1]’s and the
vector d[n]. The proof of (39) is analogous to that given in
Appendix C.

B. Fusion Center Localization

Analogously to the Three-Layer architecture, the FC can
provide an estimate of the faulty item by maximizing the
posterior probability of item failure to raise the ith alarm if
̂H[n] = 1, resulting in the following MAP estimator:

m̂[i] = arg max
m

RFC
m [n] , ̂θ[i] = θ m̂[i] (40)

with i indicating the number of times an alarm has been raised,
up to instant n.

C. Fusion Center Failure Rate Estimation

As in the Three-Layer architecture, the FC provides an
updated estimate of the failure rates λm’s by treating them as
random variables. At each time n, ̂λm[n] indicates the most
recent estimate of λm obtained by time (n − 1).

TABLE I
COMPUTATIONAL COMPLEXITY OF THE ARCHITECTURES

D. Fusion Center Parameters Calculation and Transmission

In the final stage of the process, the FC proceeds to update
the estimates of the failure rates and subsequently computes
the values of ϕm[n+1]’s using (6). Following this, it calculates
and transmits the values of γk[n+1]’s to the respective sensors
for use in the forthcoming energy test, as per (17).

After obtaining the thresholds, the FC calculates the values
of P(m)

D,k[n + 1]’s and PF,k[n + 1]’s based on (18) and (19).
These values play a key role in the (recursive) computation of
�FC

n+1(d[n + 1], . . . , d[n0]) using (38) and (39).

VII. COMPUTATIONAL COMPLEXITY

This section is focused on the computational complexity of
the tasks performed in all the architectures previously outlined.

All the architectures share the same edge-layer design in
which each sensor performs an energy test at each discrete
instant. Specifically, we were able to lower the computational
complexity of the local tests from O(M) to O(1), as previously
discussed in Section III.

Table I shows the computational complexity of each archi-
tecture with a subdivision by layer (excluding the edge layer)
and the task performed. We can notice that the detection
techniques relying on the Shewhart and CUSUM charts do
not differ in computational complexity thanks to the recursive
form of the CUSUM chart shown in (30). The detection rules
used by the FC in both proposed architectures hold the same

RFC
m [n] � P(Hm[n] = 1|d[n], . . . , d[n0]) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

[

1 +
(

K
∏

k=1



n0
m,k(dk[n0])

)−1
(

1
1−e−̂λm[n0]	t

− 1
)

]−1

, if n = n0

[

1 +
(

K
∏

k=1

n

m,k(dk[n])

)−1(
1

1−e−̂λm[n]	t(1−RFC
m [n−1])

− 1

)

]−1

, if n > n0

(39)
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complexity. An essential difference between the proposed and
the baseline architectures is, however, the existence of the
feedback system present in the proposed algorithms.

In the Three-Layer architecture, the PPC has a low-
complexity detection rule, as this does not perform spatial
aggregation of the local decisions. However, the feedback
system requires the PPC to obtain the parameters to be
transmitted to the sensors and the FC. The calculation of
the thresholds γk[n + 1]’s is an iterative procedure with a
complexity of O(KM) per iteration. Other calculations, such
as ϕm[n + 1]’s, γk[n + 1]’s, PF,k[n + 1]’s, and P(m)

D,k[n + 1]’s,
have an overall computational complexity of O(KM). The
highest complexity resides in the calculation of QF[n + 1]’s
and Q(m)

D [n + 1]’s as this is O(2KM), making the Three-Layer
architecture unsuitable when a high number of sensors is used.

On the other hand, the Two-Layer architecture transfers the
spatial aggregation from the PPC to the FC, which now has
to perform a spatiotemporal aggregation as well as the task
of obtaining the parameters to be transmitted to the sensors.
This, although it increases the absolute number of operations,
keeps the computational complexity of the operations to be
performed by the FC constant at O(KM), resulting in an
overall reduction of complexity thanks to the removal of the
operations requiring exponential time.

It is worth noticing that the localization techniques in
all four architectures do not require any extra operation
and, therefore, do not contribute to an increase in compu-
tational complexity. The reason is that such techniques are
all based on function maximization via grid search, which
has a complexity of O(KM) (or O(M) in the Three-Layer
architecture). However, such maximization has already been
obtained during the detection step. Therefore, in order to
complete the localization task, it is simply necessary to store
the index generating the highest among the function’s values
obtained during the detection stage.

VIII. CASE STUDY

A. Simulation Setup

The Goliat FPSO is an offshore oil platform situated in
the Norwegian Barents Sea. This platform uses a subsea
production system composed of various templates placed on
the seabed for its operations.3 The challenging aspect of
this setup is that oil leaks occur in deep waters, rendering
their detection even more complex. Additionally, due to the
significant depths involved, inspections necessitate the use of
remotely operated vehicles or autonomous underwater vehicle,
incurring high costs, thus emphasizing the need to minimize
false alarms [9]. Simultaneously, offshore operations are sub-
ject to stringent environmental regulations, which demand
the rapid detection of spills to minimize the dispersion of
hydrocarbons [36]. Underwater oil leaks exhibit a distinctive
feature in the form of acoustic signals that can be detected
using passive acoustic sensors [37], [38]. In this specific setup,
each template is equipped with a manifold that is under the
surveillance of three passive acoustic sensors. These sensors

3For further insights into subsea production systems, refer to [35].

Fig. 3. Attenuation function versus distance between sensor and faulty item.

Fig. 4. Goliat’s template: the structural components are represented in gray,
the manifold in blue, the sensors in green, the valves in red, and the connectors
in orange.

measure sound pressure as an integral component of the leak
detection system [28], [39].

A reliability analysis recognized M = 20 items of interest
assumed to be positioned at the same height as the sensors, as
shown in Fig. 4. The algorithms described earlier are assumed
to have been integrated into the existing system to assess their
performance. The attenuation function used is as follows [10]:

g(xk, θm) =
√

(

lref

‖xk − θm‖
)ksc

10(lref−‖xk−θm‖)α10−4 (41)

where lref and ‖xk − θm‖ are expressed in meters, α is the
seawater absorption coefficient in dB/km, and ksc is the dimen-
sionless spreading coefficient. The value of α was determined
using the Francois and Garrison equation [40], [41]. At the
same time, the underwater speed of sound was calculated
based on the Chen and Millero equation [42], utilizing the
input parameters listed in Table II. The coefficients of these
models are found in [10]. Fig. 3 shows the attenuation of the
signal emitted by a faulty item with respect to its distance to
a generic sensor using the parameters in Table II at varying
values of ksc.
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(a) (b) (c)

Fig. 5. Performance curves at SNRm,k = 0 dB ∀m, k. (a) P10 versus ADD. (b) P10 versus P1. (c) P10 versus RMSE.

TABLE II
SIMULATION INPUT PARAMETERS

The proposed Three-Layer architecture is compared with
the WSN presented in Section IV-A. This is because the
Three-Layer WSN is designed to be installed over an existing
architecture where the final decision is taken by an FC via
Shewhart chart by adding a PPC and a feedback system.
The Two-Layer architecture is instead compared with the
WSN described in Section IV-B performing detection via the
CUSUM chart. As stated previously, the architectures used for
comparison reasons lack a feedback system. The Shewhart and
CUSUM charts use the stationary prior probabilities of item
failure seen in (7), where the values of λm’s are substituted by
λm,0’s as the former are unknown.

The numerical results were derived via simulation consisting
of 200 Monte Carlo runs using MATLAB.4 In these sim-
ulations, each run emulated the operational lifespan of the
platform, neglecting inspection and maintenance times. The
simulated time, the value of 	t, and the diverse SNRm,k �
σ 2

ξ,m/σ 2
w,k values can be found in Table II. At each run, a

new set of realizations of the M Poisson processes and their
corresponding failure rates was generated, with λm values
drawn from a Gamma distribution using central moments
obtained from Table III, where literature values were sourced
from the OREDA Handbook [48].

In order to summarize the main detection results, it is
necessary to introduce the following metrics:

4Each set of 200 runs was performed for various γ ∗ values to generate the
performance curves.

TABLE III
LITERATURE FAILURE RATES OF COMPONENTS IN SUBSEA MANIFOLDS

P10 � P
(

̂H[n] = 1|H[n] = 0
)

(42)

P1 � P(H[n] = 1) (43)

ADD � E
(

εm,j
)

/	t (44)

where P10 is the Probability of False Alarm, P1 is the
Probability of Faulty State, and ADD is the Average Detection
Delay. The localization performances are instead evaluated
using the root-mean-square error (RMSE) between the esti-
mated position of the leak and its actual location. Figs. 5–7
show the previously introduced metrics as P10 varies in
[10−3, 1], at different values of SNR (see Table II). Higher
values (resp., lower values) of P10 can be obtained by
decreasing (resp., increasing) the threshold γ ∗ in the highest
architectural layer. The choice of having P10 to be on the
abscissa in all plots is aimed at improving the readability of
the results.

B. Detection Results

By looking at the plots in Figs. 5(a), 6(a), and 7(a), it is
immediately visible how ADD greatly decreases as the SNR
increases regardless of the employed architecture, once P10 is
fixed. In particular, the ADD shows a decreasing trend with
respect to P10 as a consequence of the lowering of threshold
γ ∗, with ADD → 0 as P10 → 1, for all the methods.
Specifically, for low values of P10, the proposed Two-Layer
architecture shows the lowest values of ADD among the four
outlined in this work. It is worth noticing that the Shewhart
chart is unable to operate at P10 < 10−2 due to the lack of
temporal integration in the FC. Such a limitation is overcome
by using the PPC with our proposed Three-Layer architecture
that shows performances equivalent to the Shewhart chart with
the further benefit of being able to work at P10 < 10−2.
Moreover, at low SNR, the Three-Layer architecture tends to
perform slightly better than the CUSUM chart, highlighting
the benefits of a Bayesian approach, especially at low SNR.
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(a) (b) (c)

Fig. 6. Performance curves at SNRm,k = 5 dB ∀m, k. (a) P10 versus ADD. (b) P10 versus P1. (c) P10 versus RMSE.

(a) (b) (c)

Fig. 7. Performance curves at SNRm,k = 10 dB ∀m, k. (a) P10 versus ADD. (b) P10 versus P1. (c) P10 versus RMSE.

These trends in the performances are also observed when
evaluating P1 representing the fraction of time that the system
spends in a faulty state. Figs. 5(b), 6(b), and 7(b) show
a similarity in behavior between the ADD and P1, as we
vary P10. This shows the tradeoff between a low P10 and a
low P1, which must be addressed when choosing the proper
threshold γ ∗. As it is desirable to work at low values of P10,
it is vital to select an architecture that can limit the effect
of having a higher threshold on P1. Because of the above-
mentioned similarities, it is easy to see that, also in this case,
the Two-Layer architecture provides the best performances by
reaching the lowest values of P1, given a fixed P10.

It must be mentioned that even in the hypothetical case
of P10 = 1, we will have that P1 > 0 as no architecture
can prevent a leak from happening but can only reduce the
detection delay with the effect of minimizing P1.

C. Localization Results

The localization results displayed in Figs. 5(c), 6(c),
and 7(c) show that, for the case of the Two-Layer proposed
architecture and the CUSUM chart, as we lower P10, we
simultaneously lower the localization RMSE causing a tradeoff
between localization accuracy and a quick detection. The
explanation for this behavior is that raising the detection
threshold has the double effect of increasing the ADD, which
simultaneously means that the highest hierarchical layer has
collected more inputs, therefore improving the identification

of the faulty item. This does not apply to the Shewhart chart
and the Three-Layer architecture: the RMSE observed when
employing the Shewhart chart does not have a monotonic
behavior (as well as not being able to operate at P10 < 10−2),
while the Three-Layer architecture, as we lower P10, has a
virtually null localization improvement.

The behavior associated with the Shewhart chart is given
by the nature of its localization algorithm, which produces
estimates using only the last vector of local decisions as an
input. Such a lack of time aggregation prevents the localization
algorithm from updating its estimate as new local decisions
are collected over time, which would cause the RMSE to
decrease together with P10, like in the case of the Two-Layer
architecture and the CUSUM chart. Interestingly, we observe
that in the Shewhart chart, as P10 decreases, the behavior
of the RMSE is hard to predict. Still, in general, it tends
to reach its maximum value when P10 reaches its minimum.
In fact, for a system performing detection and localization
without time aggregation, a tradeoff exists between a low
P10 and localization RMSE. The reason for this is that a
lower value of P10 means that the threshold required to
trigger an alarm must be increased with a consequent effect
of triggering alarms only when a higher number of sensors
sends a positive detection. However, a low threshold can
compromise the ability of the system to localize the faulty
item, as there is a loss of correlation between the position of
the faulty item and the location of the activated sensors. This
can be brought to its limit case of a system detecting a leak
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via Shewhart chart only when �FC(d[n]) ≥ γ ∗, with γ ∗ =
�FC(

[

d1[n] = 1 · · · dK[n] = 1
]T

) (i.e., a system that triggers
an alarm only when all the sensors send an alarm to the FC).
In such a scenario, every alarm would be accompanied by the
same localization result regardless of the position of the faulty
item.

The Three-Layer architecture, as in the case of the Shewhart
chart, does not provide effective results in terms of localization
RMSE, confirming its main purpose of being a way to lower
the probability of false alarm of the Shewhart chart. Unlike the
Shewhart chart, the Three-Layer architecture performs a time
aggregation in its highest hierarchical layer (the PPC), creating
more stability in the behavior of the localization RMSE, as
P10 changes. However, such time aggregation is performed on
the FC’s decisions over time that do not contain any spatial
information regarding the sensors that contributed to such
decisions. The consequence is an almost constant value of
localization RMSE since the system tends to identify as faulty
those items that at a generic moment show the highest value
of ̂λm[n], regardless of the spatial location of the activated
sensors since this information is unknown for the PPC.

This problem is addressed by the Two-Layer architecture
and the CUSUM chart, where the FC performs both time
and spatial aggregation of the sensors’ local decisions over
time. As in the discussion of the detection performances, we
notice how the Two-Layer approach outperforms the rest of
the architectures in terms of localization RMSE.

D. Final Remarks

In conclusion, the Two-Layer architecture provides the
lowest values of ADD, especially at low values of P10, where
it guarantees a low P1, which is a critical goal for Oil
and Gas applications. On the other hand, the Three-Layer
architecture has proven to be an adequate tool to upgrade an
existing network performing the Shewhart chart, especially
when low SNR are involved where its detection performances
are comparable to those of the CUSUM chart.

As far as the localization task is concerned, it has been
observed that the best performing architectures are those
where the highest hierarchical layer performs a spatiotemporal
aggregation of the local decisions as in the Two-Layer archi-
tecture and the CUSUM chart. Of these two, the Two-Layer
architecture is the one able to achieve the lowest RMSE.

It is crucial to emphasize that, on the detection side, the
Two-Layer architecture achieves optimality in a Bayesian
sense by relying on a posterior detector for decision-making.
While the Three-Layer detector also attains Bayesian optimal-
ity, it is worth noting that its detection optimality is restricted
by the binary nature of the input received by the PPC from the
FC. In the proposed methods, the localization procedure can be
deemed optimal from a Bayesian perspective, given its reliance
on MAP estimation. However, at the system level, localization
faces challenges due to detection errors. This is attributed
to the fact that the triggering of a localization procedure
is conditional to a positive decision, and this decision is
based on a rule that does not prioritize the minimization
of localization errors, as done in joint detection-localization
procedures (see [49], [50]).

The choice of the appropriate detection threshold in the
proposed architecture should be obtained via simulation based
on a metric to satisfy. Possible strategies for threshold selec-
tion include: 1) selecting the threshold corresponding to the
maximum value of P10 that is tolerated; 2) select a threshold
able to guarantee a maximum value of ADD; 3) minimization
of P1; and 4) the threshold is chosen using a tailored indicator
that takes into consideration all the previous parameters as
well as operational factors.

IX. CONCLUSION AND FUTURE WORK

We proposed two architectures addressing the detection
and localization task via WSN within industrial plants.
Specifically, we proposed a Three-Layer and a Two-Layer
Bayesian fusion strategy relying on reliability data for
improved performances. In the Three-Layer architecture, we
implement a PPC whose task is to perform quickest detection
and localization via temporal aggregation of the outputs of
an FC that carries out a Shewhart Chart detection rule.
Such a temporal aggregation takes advantage of reliability
data regarding the monitored system. On the other hand, the
Two-Layer architecture directly performs quickest detection
and localization at the FC via a spatiotemporal combina-
tion of the local decisions taken by the sensors capitalizing
on reliability data. Both architectures are equipped with a
feedback mechanism necessary for communicating updated
parameters from the highest hierarchical layer to the lowest.
Two baseline methods, the Shewhart and CUSUM charts,
have been introduced. The case study of underwater oil spills
in subsea production systems is used to test the proposed
architectures, showing the improvements in terms of detection
and localization accuracy when the proposed architectures are
used. Specifically, the Three-Layer architecture demonstrated
the advantages of being able to operate at a lower Probability
of False Alarm when compared to the Shewhart chart, which
was bound to be higher than 10−2. Meanwhile, the Two-
Layer architecture outperforms the CUSUM chart in terms
of both detection and localization performance, making it the
best performing architecture among those introduced in the
study. In particular, when fixing P10 = 10−3, the Two-Layer
architecture was able to reduce the ADD from around 10%
(SNR = 10 dB) up to around 30% (SNR = 0 dB).

Future works include: 1) considering more complex failure
models; 2) the reduction of complexity via more efficient
techniques for the computation of Q(m)

D and QF; 3) modeling
erroneous communication channels; 4) a more accurate sta-
tistical representation of the signal measured by the sensors,
including possible correlations between measured samples in
space and time; 5) integration of machine learning strategies
for improved detection and localization performances; 6) a
study on the distribution of the localization errors; 7) modeling
simultaneous faults; and 8) development of joint detection and
localization techniques.

APPENDIX A
POISSON PROCESS FOR FAILURE MODELING

With the knowledge that Sm(t) ∼ Poisson(λmt), we can
obtain the failure probability for the mth item Fm(t)
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Fm(t) = P(Hm(t) = 1) = P
(

Tm,Sm(t−τt)+1 ≤ τt
)

= 1 − e−λmτt .

We can now obtain F(t). With the knowledge that Hm(t) ∼
B(Fm(t)), we can use the probability-generating function
parameterized by z of the variable

∑M
m=1 Hm(t)

G M
∑

m=1
Hm(t)

(z) =
M
∏

m=1

GHm(t)(z) =
M
∏

m=1

[1 + Fm(t)(z − 1)].

Using the last result, we can obtain P(
∑M

m=1 Hm(t) = 1)

P

(

M
∑

m=1

Hm(t) = 0

)

= G∑M
m=1 Hm(t)(0) =

M
∏

m=1

(1 − Fm(t)).

Thus, we can finally obtain F(t)

F(t) = P(H(t) = 1) = 1 − P

(

M
∑

m=1

Hm(t) = 0

)

= 1 −
M
∏

m=1

(1 − Fm(t)) = 1 −
M
∏

m=1

e−λmτt .

However, at low values of λmτt’s, low detection delay, and
small 	t, failures behave as disjoint events (rare events
approximation), therefore

F(t) = P(H(t) = 1) ≈
M
∑

m=1

P(Hm(t) = 1) =
M
∑

m=1

Fm(t).

Thanks to the rare event approximation, we can also retrieve
the value of the prior probability of item failure ϕm(t)

ϕm(t) � P(Hm(t) = 1|H(t) = 1)

≈ P(Hm(t) = 1)

P(H(t) = 1)
= Fm(t)

F(t)
.

Moreover, we can obtain the stationary prior probability of
item failure by assuming the failure model as a perfect Poisson
process. This is done by calculating the probability that, at a
certain time t, the next fault belongs to the mth process

ϕm � P(Hm(t) = 1|H(t) = 1)

= P

(

Tm,Sm(t)+1 < Tf �=m,Sf �=m(t)+1

)

= λm
∑M

m=1 λm
.

This result is independent of t and Sm(t).

APPENDIX B
FUSION CENTER PERFORMANCE IN THREE-LAYER WSN

The following is the proof of the performances
in (22) and (23) of the fusion rule performed by the FC.
Regarding the probability of detection associated with the
failure of the mth item, we obtain

Q(m)
D � P

(

̂H[n] = 1|Hm[n] = 1
)

= P
(

�FC(d[n]) ≥ γ ∗|Hm[n] = 1
)

=
∑

d: �FC(d)≥γ ∗
P(d|Hm[n] = 1)

=
∑

d: �FC(d)≥γ ∗

K
∏

k=1

P(dk|Hm[n] = 1)

=
∑

d:�FC(d)≥γ ∗

K
∏

k=1

[

(

P(m)
D,k

)dk
(

1 − P(m)
D,k

)1−dk
]

.

The proof exploited the independence of the local decisions.
The same steps can be used to prove QF .

Note that, in case the WSN is provided with a feedback
system (i.e., the time-dependent prior probability of item
failure is used), the calculation of the values of Q(m)

D [n]’s and
QF[n] are analogous.

APPENDIX C
RECURSIVE FORM OF PROPOSED DETECTOR

In this appendix, we detail how the expression of RPPC
m [n] �

P(Hm[n] = 1|D[n]) can be updated recursively as a function
of RPPC

m [n − 1], for each m = 1, . . . , M and n > n0.
To begin, we leverage Bayes’ theorem and the condi-

tional independence (i.e., given Hm[n]) of FC decisions
D[1], . . . ,D[n] over time. By doing this, we get (45), shown
at the bottom of the page, in which we further simplified the
expression exploiting the following property:

P(D[n]|Hm[n],D[n − 1]) = P(D[n]|Hm[n])

which is a consequence of the uninformativeness of D[n − 1]
when inferring D[n], given that Hm[n] is known.

Applying the definition of Ln
m(D[n]), and via algebraic

manipulations, we can reformulate (45) in the following
compact form:

RPPC
m [n]

=
[

1 + 1

Ln
m(D[n])

(

1

P(Hm[n] = 1|D[n − 1])
− 1

)]−1

.

Next, we need to obtain P(Hm[n] = 1|D[n − 1]). The next
set of equations is defined to facilitate the derivation

P(Hm[n]|Hm[n − 1],D[n − 1]) = P(Hm[n]|Hm[n − 1])(46)

P(Hm[n] = 1|Hm[n − 1] = 1) = 1 (47)

where (46) is a consequence of the uninformativeness of
D[n − 1] when inferring Hm[n] given that Hm[n−1] is known,
and (47) is the impossibility for an item to repair itself.

By applying the Law of Total Probability, we get (48),
shown at the top of the next page. Equation (48) can be
reduced by applying (46) and (47). Furthermore, exploiting
the definition of RPPC

m [n − 1], (48) can be written as reported
in (49), shown at the top of the next page.

RPPC
m [n] = P(D[n]|Hm[n] = 1)P(Hm[n] = 1|D[n − 1])

P(D[n]|Hm[n] = 1)P(Hm[n] = 1|D[n − 1]) + P(D[n]|Hm[n] = 0)[1 − P(Hm[n] = 1|D[n − 1])]
(45)
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P(Hm[n] = 1|D[n − 1]) =
1
∑

i=0

P(Hm[n] = 1|D[n − 1],Hm[n − 1] = i)P(Hm[n − 1] = i) (48)

P(Hm[n] = 1|D[n − 1]) = 1 − [1 − P(Hm[n] = 1|Hm[n − 1] = 0)]
(

1 − RPPC
m [n − 1]

)

(49)

P(Hm[n] = 1|D[n − 1]) = 1 − e−λm	t(1 − RPPC
m [n − 1]

)

(50)

Moreover, via (3), it is possible to prove that Hm[n]|Hm[n−
1] = 0 ∼ B(1 − e−λm	t), leading to (50), shown at the top of
the page.

Finally, aggregating the previously obtained results, we
obtain the recursive expression of RPPC

m [n], for n > n0

RPPC
m [n]

=
[

1 + 1

Ln
m(D[n])

(

1

1 − e−λm	t(1 − RPPC
m [n − 1])

− 1

)]−1

.

When n = n0, the problem reduces to RPPC
m [n0] =

P(Hm[n0] = 1|D[n0]). By applying Bayes’ theorem [as we
did for the case of n > n0 in (45)], and knowing that
Hm[n0] ∼ B(1 − e−λm	t), it becomes easy to prove the
following expression:

RPPC
m [n0] =

[

1 + 1

Ln0
m (D[n0])

(

1

1 − e−λm	t
− 1

)]−1

.
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